Abstract
Electroluminescence (EL) images enable defect detection in solar photovoltaic (PV) modules that are otherwise invisible to the naked eye, much the same way an x-ray enables a doctor to detect cracks and fractures in bones. The prevalence of multiple defects, e.g. micro cracks, inactive regions, gridline defects, and material defects, in PV module can be quantified with an EL image. Modern, deep learning techniques for computer vision can be applied to extract the useful information contained in the images on entire batches of PV modules. Defect detection and quantification in EL images can improve the efficiency and the reliability of PV modules both at the factory by identifying potential process issues and at the PV plant by identifying and reducing the number of faulty modules installed. In this work, we train and test a semantic segmentation model based on the u-net architecture for EL image analysis of PV modules made from mono-crystalline and multi-crystalline silicon wafer-based solar cells. This work is focused on developing and testing a deep learning method for computer vision that is independent of the equipment used to generate the EL images, independent of the wafer-based module design, and independent of the image quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.