Abstract

Atomistic simulation techniques are used to investigate the defect properties of anatase TiO(2) and Li(x)TiO(2) both in the bulk and at the surfaces. Interatomic potential parameters are derived that reproduce the lattice constants of anatase, and the energies of bulk defects and surface structures are calculated. Reduction of anatase involving interstitial Ti is found to be the most favorable defect reaction in the bulk, with a lower energy than either Frenkel or Schottky reactions. The binding energies of selected defect clusters are also presented: for the Ti(3+)-Li(+) defect cluster, the binding energy is found to be approximately 0.5 eV, suggesting that intercalated Li ions stabilize conduction band electrons. The Li ion migration path is found to run between octahedral sites, with an activation energy of 0.45-0.65 eV for mole fractions of lithium in Li(x)TiO(2) of x < or = 0.1. The calculated surface energies are used to predict the crystal morphology, which is found to be a truncated bipyramid in which only the (101) and (001) surfaces are expressed, in accord with the available microscopy data. Calculations of defect energies at the (101) surface suggest that single Ti(3+) defects and neutral Ti(3+)-Li(+) pairs tend to segregate to the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.