Abstract

We propose a simple computational method for constructing an arbitrage-free CDO pricing model which matches a pre-specified set of CDO tranche spreads. The key ingredient of the method is a formula for computing the local default intensity function of a portfolio from its expected tranche notionals. This formula can be seen as an analog, for portfolio credit derivatives, of the well-known Dupire formula. Together with a quadratic programming method for recovering expected tranche notionals from CDO spreads, our inversion formula leads to an efficient non-parametric method for calibrating CDO pricing models.Comparing this approach to other calibration methods, we find that model-dependent quantities such as the forward starting tranche spreads and jump-to-default ratios are quite sensitive to the calibration method used, even within the same model class. On the other hand, comparing the local default intensities implied by different credit portfolio models reveals that apparently very different models such as static Student-t copula models and reduced-form affine jump-diffusion models, lead to similar marginal loss distributions and tranche spreads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.