Abstract

Along with the advancement of several emerging computing paradigms and technologies, such as cloud computing, mobile computing, artificial intelligence, and big data, Internet of Things (IoT) technologies have been applied in a variety of fields. In particular, the Internet of Healthcare Things (IoHT) is becoming increasingly important in human activity recognition (HAR) due to the rapid development of wearable and mobile devices. In this article, we focus on the deep-learning-enhanced HAR in IoHT environments. A semisupervised deep learning framework is designed and built for more accurate HAR, which efficiently uses and analyzes the weakly labeled sensor data to train the classifier learning model. To better solve the problem of the inadequately labeled sample, an intelligent autolabeling scheme based on deep $Q$ -network (DQN) is developed with a newly designed distance-based reward rule which can improve the learning efficiency in IoT environments. A multisensor based data fusion mechanism is then developed to seamlessly integrate the on-body sensor data, context sensor data, and personal profile data together, and a long short-term memory (LSTM)-based classification method is proposed to identify fine-grained patterns according to the high-level features contextually extracted from the sequential motion data. Finally, experiments and evaluations are conducted to demonstrate the usefulness and effectiveness of the proposed method using real-world data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.