Abstract

Graph Neural Networks (GNNs) have been drawing significant attention to representation learning on graphs. Recent works developed frameworks to train very deep GNNs and showed impressive results in tasks like point cloud learning and protein interaction prediction. In this work, we study the performance of such deep models in large-scale graphs. In particular, we look at the effect of adequately choosing an aggregation function on deep models. We find that GNNs are very sensitive to the choice of aggregation functions (e.g. mean, max, and sum) when applied to different datasets. We systematically study and propose to alleviate this issue by introducing a novel class of aggregation functions named Generalized Aggregation Functions. The proposed functions extend beyond commonly used aggregation functions to a wide range of new permutation-invariant functions. Generalized Aggregation Functions are fully differentiable, where their parameters can be learned in an end-to-end fashion to yield a suitable aggregation function for each task. We show that equipped with the proposed aggregation functions, deep residual GNNs outperform state-of-the-art in several benchmarks from Open Graph Benchmark (OGB) across tasks and domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.