Abstract

Steganography detectors built as deep convolutional neural networks have firmly established themselves as superior to the previous detection paradigm – classifiers based on rich media models. Existing network architectures, however, still contain elements designed by hand, such as fixed or constrained convolutional kernels, heuristic initialization of kernels, the thresholded linear unit that mimics truncation in rich models, quantization of feature maps, and awareness of JPEG phase. In this work, we describe a deep residual architecture designed to minimize the use of heuristics and externally enforced elements that is universal in the sense that it provides state-of-the-art detection accuracy for both spatial-domain and JPEG steganography. The key part of the proposed architecture is a significantly expanded front part of the detector that “computes noise residuals” in which pooling has been disabled to prevent suppression of the stego signal. Extensive experiments show the superior performance of this network with a significant improvement, especially in the JPEG domain. Further performance boost is observed by supplying the selection channel as a second channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.