Abstract

Approximation rate bounds for emulations of real-valued functions on intervals by deep neural networks (DNNs) are established. The approximation results are given for DNNs based on ReLU activation functions. The approximation error is measured with respect to Sobolev norms. It is shown that ReLU DNNs allow for essentially the same approximation rates as nonlinear, variable-order, free-knot (or so-called “[Formula: see text]-adaptive”) spline approximations and spectral approximations, for a wide range of Sobolev and Besov spaces. In particular, exponential convergence rates in terms of the DNN size for univariate, piecewise Gevrey functions with point singularities are established. Combined with recent results on ReLU DNN approximation of rational, oscillatory, and high-dimensional functions, this corroborates that continuous, piecewise affine ReLU DNNs afford algebraic and exponential convergence rate bounds which are comparable to “best in class” schemes for several important function classes of high and infinite smoothness. Using composition of DNNs, we also prove that radial-like functions obtained as compositions of the above with the Euclidean norm and, possibly, anisotropic affine changes of co-ordinates can be emulated at exponential rate in terms of the DNN size and depth without the curse of dimensionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.