Abstract

To harvest small networks with high accuracies, most existing methods mainly utilize compression techniques such as low-rank decomposition and pruning to compress a trained large model into a small network or transfer knowledge from a powerful large model (teacher) to a small network (student). Despite their success in generating small models of high performance, the dependence of accompanying assistive models complicates the training process and increases memory and time cost. In this article, we propose an elegant self-distillation (SD) mechanism to obtain high-accuracy models directly without going through an assistive model. Inspired by the invariant recognition in the human vision system, different distorted instances of the same input should possess similar high-level data representations. Thus, we can learn data representation invariance between different distorted versions of the same sample. Especially, in our learning algorithm based on SD, the single network utilizes the maximum mean discrepancy metric to learn the global feature consistency and the Kullback-Leibler divergence to constrain the posterior class probability consistency across the different distorted branches. Extensive experiments on MNIST, CIFAR-10/100, and ImageNet data sets demonstrate that the proposed method can effectively reduce the generalization error for various network architectures, such as AlexNet, VGGNet, ResNet, Wide ResNet, and DenseNet, and outperform existing model distillation methods with little extra training efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.