Abstract

Abstract Hybrid exoskeletons are used to blend the rehabilitative efficacy and mitigate the shortcomings of functional electrical stimulation (FES) and exoskeleton-based rehabilitative solutions. This paper introduces a novel nonlinear controller that may potentially improve the rehabilitative efficiency of a lower limb hybrid exoskeleton by implementing four key features into the FES and exoskeleton controllers. First, the FES input to the user’s muscles is saturated based on user preference to ensure user comfort. Second, rather than discarding the excess control effort from the saturated FES input, it is redirected into the exoskeleton’s motor controller. Third, a safe deep neural network (DNN) is designed to estimate the unknown dynamics of the hybrid exoskeleton and the DNN is implemented in the FES controller to improve the control efficiency and tracking performance. Fourth, an adaptive update law is designed to estimate the unknown muscle control effectiveness to facilitate the implementation of the DNN. Lyapunov stability-based methods are used to generate real-time adaptive update laws that will train the adaptive estimate of the muscle effectiveness and the output layer weights of the DNN in real-time, ensure the effectiveness and safety of the controllers, and prove global asymptotic tracking of the desired trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.