Abstract

Diabetes is an acute disease that happens when the pancreas cannot produce enough insulin. It can be fatal if undiagnosed and untreated. If diabetes is revealed early enough, it is possible, with adequate treatment, to live a healthy life. Recently, researchers have applied artificial intelligence techniques to the forecasting of diabetes. As a result, a new SMOTE-based deep LSTM system was developed to detect diabetes early. This strategy handles class imbalance in the diabetes dataset, and its prediction accuracy is measured. This article details investigations of CNN, CNN-LSTM, ConvLSTM, and deep 1D-convolutional neural network (DCNN) techniques and proposed a SMOTE-based deep LSTM method for diabetes prediction. Furthermore, the suggested model is analyzed towards machine-learning, and deep-learning approaches. The proposed model’s accuracy was measured against the diabetes dataset and the proposed method achieved the highest prediction accuracy of 99.64%. These results suggest that, based on classification accuracy, this method outperforms other methods. The recommendation is to use this classifier for diabetic patients’ clinical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.