Abstract

To develop and characterize an algorithm that mimics human expert visual assessment to quantitatively determine the quality of three-dimensional (3D) whole-heart MR images. In this study, 3D whole-heart cardiac MRI scans from 424 participants (average age, 57 years ± 18 [standard deviation]; 66.5% men) were used to generate an image quality assessment algorithm. A deep convolutional neural network for image quality assessment (IQ-DCNN) was designed, trained, optimized, and cross-validated on a clinical database of 324 (training set) scans. On a separate test set (100 scans), two hypotheses were tested: (a) that the algorithm can assess image quality in concordance with human expert assessment as assessed by human-machine correlation and intra- and interobserver agreement and (b) that the IQ-DCNN algorithm may be used to monitor a compressed sensing reconstruction process where image quality progressively improves. Weighted κ values, agreement and disagreement counts, and Krippendorff α reliability coefficients were reported. Regression performance of the IQ-DCNN was within the range of human intra- and interobserver agreement and in very good agreement with the human expert (R 2 = 0.78, κ = 0.67). The image quality assessment during compressed sensing reconstruction correlated with the cost function at each iteration and was successfully applied to rank the results in very good agreement with the human expert. The proposed IQ-DCNN was trained to mimic expert visual image quality assessment of 3D whole-heart MR images. The results from the IQ-DCNN were in good agreement with human expert reading, and the network was capable of automatically comparing different reconstructed volumes.Supplemental material is available for this article.© RSNA, 2020.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.