Abstract
Vegetation dynamics in Qinghai-Tibet Plateau (QTP) have been debated in recent decades. Most studies suggest that wetter and warmer climatic conditions would release low temperature constraints and stimulate alpine vegetation growth. Other studies suggest that climate warming might inhibit vegetation growth by increasing soil moisture depletion in the southern QTP. Most of previous studies have relied on vegetation indices derived from satellite observations to retrieve large-scale vegetation changes, and the uncertainty of vegetation indices makes it difficult to accurately characterize the vegetation trends on the QTP. Here, we developed a deep learning algorithm in the Google Earth Engine (GEE) platform to accurately map the land use/cover change (LUCC) on the QTP, and then infer vegetation gain and loss and their drivers during the period 1988–2018. The vegetation on the QTP experienced rapid greening, which was dominated by transitions from bareland to alpine grassland (27.45 × 104 km2) and from alpine grassland to alpine meadow (17.43 × 104 km2) during 1988–2018. Furthermore, although human activities influence vegetation succession at the local scale, the dominant influencing factors affecting vegetation greening on the QTP are precipitation (q-statistic = 23.87 %) and temperature (q-statistic = 11.01 %). A 30-year time series analysis clarified the specific dynamics of vegetation on the QTP, thus contributing to the understanding of the response mechanisms of alpine vegetation under climate change and providing a reference for the formulating of reasonable ecological protection policies and human development strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.