Abstract
ObjectiveTo investigate the ability of our convolutional neural network (CNN) to predict axillary lymph node metastasis using primary breast cancer ultrasound (US) images. MethodsIn this IRB-approved study, 338 US images (two orthogonal images) from 169 patients from 1/2014–12/2016 were used. Suspicious lymph nodes were seen on US and patients subsequently underwent core-biopsy. 64 patients had metastatic lymph nodes. A custom CNN was utilized on 248 US images from 124 patients in the training dataset and tested on 90 US images from 45 patients. The CNN was implemented entirely of 3 × 3 convolutional kernels and linear layers. The 9 convolutional kernels consisted of 6 residual layers, totaling 12 convolutional layers. Feature maps were down-sampled using strided convolutions. Dropout with a 0.5 keep probability and L2 normalization was utilized. Training was implemented by using the Adam optimizer and a final SoftMax score threshold of 0.5 from the average of raw logits from each pixel was used for two class classification (metastasis or not). ResultsOur CNN achieved an AUC of 0.72 (SD ± 0.08) in predicting axillary lymph node metastasis from US images in the testing dataset. The model had an accuracy of 72.6% (SD ± 8.4) with a sensitivity and specificity of 65.5% (SD ± 28.6) and 78.9% (SD ± 15.1) respectively. Our algorithm is available to be shared for research use. (https://github.com/stmutasa/MetUS). ConclusionIt's feasible to predict axillary lymph node metastasis from US images using a deep learning technique. This can potentially aid nodal staging in patients with breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.