Abstract

Time-history responses of the bridge induced by the moving vehicle provide crucial information for bridge design, operation, maintenance, etc. As inspired by this, this work attempts to provide a new paradigm for vehicle–bridge interaction (VBI) by highlighting the comparison of different deep learning algorithms applied to the prediction of time-history responses of the bridge under vehicular loads. Particularly, three deep learning architectures with few and measurable input features developed by using fully-connected feedforward neural network, long short-term memory (LSTM) network, and convolutional neural network (CNN) are proposed on the basis of the governing equation of bridge vibrations. Three VBI systems with various vehicle models are developed and further validated to produce reliable training data. To examine the accuracy of the predictive models, two advanced metrics are exploited for time-history estimate. Moreover, the proposed deep learning models are comprehensively investigated through a parametric study on the influential factors associated with the VBI system and network architecture. The results show that deep feedforward neural network (DFNN), LSTM network, and CNN can be applied in VBI analysis to estimate the bridge time-history response. The three neural networks have comparable prediction accuracies. When considering the irregularity excitation, CNN is found to be the most efficient predictive model, while DFNN needs the least training time under perfect bridge surface condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.