Abstract

MotivationRecombination is one of the essential genetic processes for sexually reproducing organisms, which can happen more frequently in some regions, called recombination hotspots. Although several factors, such as PRDM9 binding motifs, are known to be related to the hotspots, their contributions to the recombination hotspots have not been quantified, and other determinants are yet to be elucidated. Here, we propose a computational method, RHSNet, based on deep learning and signal processing, to identify and quantify the hotspot determinants in a purely data-driven manner, utilizing datasets from various studies, populations, sexes and species.ResultsRHSNet can significantly outperform other sequence-based methods on multiple datasets across different species, sexes and studies. In addition to being able to identify hotspot regions and the well-known determinants accurately, more importantly, RHSNet can quantify the determinants that contribute significantly to the recombination hotspot formation in the relation between PRDM9 binding motif, histone modification and GC content. Further cross-sex, cross-population and cross-species studies suggest that the proposed method has the generalization power and potential to identify and quantify the evolutionary determinant motifs.Availability and implementation https://github.com/frankchen121212/RHSNet.Supplementary information Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.