Abstract
PurposeMucinous breast carcinoma (MBC) tends to be misdiagnosed as fibroadenomas (FA) due to its benign imaging characteristics. We aimed to develop a deep learning (DL) model to differentiate MBC and FA based on ultrasound (US) images. The model could contribute to the diagnosis of MBC for radiologists. MethodsIn this retrospective study, 884 eligible patients (700 FA patients and 184 MBC patients) with 2257 US images were enrolled. The images were randomly divided into a training set (n = 1805 images) and a test set (n = 452 images) in a ratio of 8:2. First, we used the training set to establish DL model, DL+ age-cutoff model and DL+ age-tree model. Then, we compared the diagnostic performance of three models to get the optimal model. Finally, we evaluated the diagnostic performance of radiologists (4 junior and 4 senior radiologists) with and without the assistance of the optimal model in the test set. ResultsThe DL+ age-tree model yielded higher areas under the receiver operating characteristic curve (AUC) than DL model and DL+ age-cutoff model (0.945 vs. 0.835, P < .001; 0.945 vs. 0.931, P < .001, respectively). With the assistance of DL+ age-tree model, both junior and senior radiologists’ AUC had significant improvement (0.746-0.818, P = .010, 0.827-0.860, P = .005, respectively). ConclusionsThe DL+ age-tree model based on US images and age showed excellent performance in the differentiation of MBC and FA. Moreover, it can effectively improve the performance of radiologists with different degrees of experience that may contribute to reducing the misdiagnosis of MBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.