Abstract
Sleep apnea (SA) is a common sleep disorders affecting the sleep quality. Therefore the automatic SA detection has far-reaching implications for patients and physicians. In this paper, a novel approach is developed based on deep neural network (DNN) for automatic diagnosis SA. To this end, five features are extracted from electrocardiogram (ECG) signals through wavelet decomposition and sample entropy. The deep neural network is constructed by two-layer stacked sparse autoencoder (SSAE) network and one softmax layer. The softmax layer is added at the top of the SSAE network for diagnosing SA. Afterwards, the SSAE network can get more effective high-level features from raw features. The experimental results reveal that the performance of deep neural network can accomplish an accuracy of 96.66%, a sensitivity of 96.25%, and a specificity of 97%. In addition, the performance of deep neural network outperforms the comparison models including support vector machine (SVM), random forest (RF), and extreme learning machine (ELM). Finally, the experimental results reveal that the proposed method can be valid applied to automatic SA event detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.