Abstract

Artificial intelligence (AI), driven by advances in deep learning (DL), has the potential to reshape the field of cardiovascular imaging (CVI). While DL for CVI is still in its infancy, research is accelerating to aid in the acquisition, processing, and/or interpretation of CVI across various modalities, with several commercial products already in clinical use. It is imperative that cardiovascular imagers are familiar with DL systems, including a basic understanding of how they work, their relative strengths compared with other automated systems, and possible pitfalls in their implementation. The goal of this article is to review the methodology and application of DL to CVI in a simple, digestible fashion toward demystifying this emerging technology. At its core, DL is simply the application of a series of tunable mathematical operations that translate input data into a desired output. Based on artificial neural networks that are inspired by the human nervous system, there are several types of DL architectures suited to different tasks; convolutional neural networks are particularly adept at extracting valuable information from CVI data. We survey some of the notable applications of DL to tasks across the spectrum of CVI modalities. We also discuss challenges in the development and implementation of DL systems, including avoiding overfitting, preventing systematic bias, improving explainability, and fostering a human-machine partnership. Finally, we conclude with a vision of the future of DL for CVI. Deep learning has the potential to meaningfully affect the field of CVI. Rather than a threat, DL could be seen as a partner to cardiovascular imagers in reducing technical burden and improving efficiency and quality of care. High-quality prospective evidence is still needed to demonstrate how the benefits of DL CVI systems may outweigh the risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.