Abstract
In this contribution, we present a high-resolution and accurate sound source localization via a deep learning framework. While the spherical microphone arrays can be utilized to produce omnidirectional beams, it is widely known that the conventional spherical harmonics beamforming (SHB) has a limit in terms of its spatial resolution. To accomplish the sound source localization with high resolution and preciseness, we propose a convolutional neural network (CNN)-based source localization model as a way of a data-driven approach. We first present a novel way to define the source distribution map that can spatially represent the single point source's position and strength. By utilizing paired dataset with spherical harmonics beamforming maps and our proposed high-resolution maps, we develop a fully convolutional neural network based on the encoder-decoder structure for establishing the image-to-image transformation model. Both quantitative and qualitative results are demonstrated to evaluate the powerfulness of the proposed data-driven source localization model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTER-NOISE and NOISE-CON Congress and Conference Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.