Abstract

Preliminary compound identification and peak annotation in gas chromatography-mass spectrometry is usually made using mass spectral databases. There are a few algorithms that enable performing a search of a spectrum in a large mass spectral library. In many cases, a library search procedure returns a wrong answer even if a correct compound is contained in a library. In this work, we present a deep learning driven approach to a library search in order to reduce the probability of such cases. Machine learning ranking (learning to rank) is a class of machine learning and deep learning algorithms that perform a comparison (ranking) of objects. This work introduces the usage of deep learning ranking for small molecules identification using low-resolution electron ionization mass spectrometry. Instead of simple similarity measures for two spectra, such as the dot product or the Euclidean distance between vectors that represent spectra, a deep convolutional neural network is used. The deep learning ranking model outperforms other approaches and enables reducing a fraction of wrong answers (at rank-1) by 9-23% depending on the used data set. Spectra from the Golm Metabolome Database, Human Metabolome Database, and FiehnLib were used for testing the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.