Abstract

In this research, a simulation system based on a physical model and its lighting feature is developed to perform three-dimensional model creation, and graphics software is used to randomly generate a simulated surface with defects, which also cooperates with the virtual environment to reproduce the original environment. Furthermore, the use of a generative adversarial network to optimize the virtual dataset created symmetrically by the system is studied in order to reduce the effect of the difference between the real and virtual images. This system compensates for the condition of data imbalance occurring between qualified products and defective products in the production line, and a large amount of random data with and without defects can be created. In addition, the process of the database creation is classified and marked, such that complicated and time-consuming preliminary steps can be reduced; therefore, the data collection cost can be significantly reduced and the uncertainly associated with manual operation is also reduced. When a simulated textured surface generated from this system is used to perform training, the inspection background accuracy reaches 98%, and the accuracy also reaches 78% in real defect inspection process; therefore, the location of the defect can be determined completely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.