Abstract

Machine learning techniques are extensively used to understand and predict complex non-linear phenomena across various applications. Moreover, these techniques minimize the time and costs associated with experimental and numerical analysis. In this work, a deep learning technique, specifically artificial neural networks (ANN), was employed to predict the density/porosity of laser powder-bed fusion (LPBF) additively manufactured (AM) parts by training the ANN model with X-ray computed tomography (CT) images. In addition to the experimental data, synthetic CT data was generated and used to improve the performance of the ANN model. The ANN model was then optimized for the number of hidden layers and neurons. Different errors like mean absolute error (MAE), root mean square error (RMSE), and square of co-relation coefficient (R2) were used as performance metrics to determine the accuracy and effectiveness of the network. The proposed ANN model was validated and showed excellent predictions (R2 = 0.9981, MAE = 1.6944 x 10−5). The framework proposed in this work can be used to speed-up the quality assurance of AM parts by reducing the time required for the analysis of CT data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.