Abstract
Point cloud completion aims to utilize algorithms to repair missing parts in 3D data for high-quality point clouds. This technology is crucial for applications such as autonomous driving and urban planning. With deep learning’s progress, the robustness and accuracy of point cloud completion have improved significantly. However, the quality of completed point clouds requires further enhancement to satisfy practical requirements. In this study, we conducted an extensive survey of point cloud completion methods, with the following main objectives: (i) We classified point cloud completion methods into categories based on their principles, such as point-based, convolution-based, GAN-based, and geometry-based methods, and thoroughly investigated the advantages and limitations of each category. (ii) We collected publicly available datasets for point cloud completion algorithms and conducted experimental comparisons using various typical deep-learning networks to draw conclusions. (iii) With our research in this paper, we discuss future research trends in this rapidly evolving field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.