Abstract

Commercial load is an essential demand-side resource. Monitoring commercial loads helps not only commercial customers understand their energy usage to improve energy efficiency but also helps electric utilities develop demand-side management strategies to ensure stable operation of the power system. However, existing non-intrusive methods cannot monitor multiple commercial loads simultaneously and do not consider the high correlation and severe imbalance among commercial loads. Therefore, this paper proposes a deep learning-based non-intrusive commercial load monitoring method to solve these problems. The method takes the total power signal of the commercial building as input and directly determines the state and power consumption of several specific appliances. The key elements of the method are a new neural network structure called TTRNet and a new loss function called MLFL. TTRNet is a multi-label classification model that can autonomously learn correlation information through its unique network structure. MLFL is a loss function specifically designed for multi-label classification tasks, which solves the imbalance problem and improves the monitoring accuracy for challenging loads. To validate the proposed method, experiments are performed separately in seen and unseen scenarios using a public dataset. In the seen scenario, the method achieves an average F1 score of 0.957, which is 7.77% better than existing multi-label classification methods. In the unseen scenario, the average F1 score is 0.904, which is 1.92% better than existing methods. The experimental results show that the method proposed in this paper is both effective and practical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.