Abstract
BackgroundsIntensity-modulated proton therapy (IMPT) is particularly susceptible to range and setup uncertainties, as well as anatomical changes. PurposeWe present a framework for IMPT planning that employs a deep learning method for dose prediction based on multiple-CT (MCT). The extra CTs are created from cone-beam CT (CBCT) using deformable registration with the primary planning CT (PCT). Our method also includes a dose mimicking algorithm. MethodsThe MCT IMPT planning pipeline involves prediction of robust dose from input images using a deep learning model with a U-net architecture. Deliverable plans may then be created by solving a dose mimicking problem with the predictions as reference dose. Model training, dose prediction and plan generation are performed using a dataset of 55 patients with head and neck cancer in this retrospective study. Among them, 38 patients were used as training set, 7 patients were used as validation set, and 10 patients were reserved as test set for final evaluation. ResultsWe demonstrated that the deliverable plans generated through subsequent MCT dose mimicking exhibited greater robustness than the robust plans produced by the PCT, as well as enhanced dose sparing for organs at risk. MCT plans had lower D2% (76.1 Gy vs. 82.4 Gy), better homogeneity index (7.7% vs. 16.4%) of CTV1 and better conformity index (70.5% vs. 61.5%) of CTV2 than the robust plans produced by the primary planning CT for all test patients. ConclusionsWe demonstrated the feasibility and advantages of incorporating daily CBCT images into MCT optimization. This approach improves plan robustness against anatomical changes and may reduce the need for plan adaptations in head and neck cancer treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.