Abstract
The objective of this study was to investigate the application effect of deep learning model combined with different magnetic resonance imaging (MRI) sequences in the evaluation of cartilage injury of knee osteoarthritis (KOA). Specifically, an image superresolution algorithm based on an improved multiscale wide residual network model was proposed and compared with the single-shot multibox detector (SSD) algorithm, superresolution convolutional neural network (SRCNN) algorithm, and enhanced deep superresolution (EDSR) algorithm. Meanwhile, 104 patients with KOA diagnosed with cartilage injury were selected as the research subjects and underwent MRI scans, and the diagnostic performance of different MRI sequences was analyzed using arthroscopic results as the gold standard. It was found that the image reconstructed by the model in this study was clear enough, with minimum noise and artifacts, and the overall quality was better than that processed by other algorithms. Arthroscopic analysis found that grade I and grade II lesions concentrated on patella (26) and femoral trochlear (15). In addition to involving the patella and femoral trochlea, grade III and grade IV lesions gradually developed into the medial and lateral articular cartilage. The 3D-DS-WE sequence was found to be the best sequence for diagnosing KOA injury, with high diagnostic accuracy of over 95% in grade IV lesions. The consistency test showed that the 3D-DESS-WE sequence and T2∗ mapping sequence had a strong consistency with the results of arthroscopy, and the Kappa consistency test values were 0.748 and 0.682, respectively. In conclusion, MRI based on deep learning could clearly show the cartilage lesions of KOA. Of different MRI sequences, 3D-DS-WE sequence and T2∗ mapping sequence showed the best diagnosis results for different degrees of KOA injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Mathematical Methods in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.