Abstract

While there have been a considerable number of studies on computer vision (CV)-based crack detection on concrete/asphalt public facilities, such as sewers and tunnels, masonry-related structures have received less attention. This research seeks to implement an automated crack segmentation and a real-life crack length measurement of masonry walls using CV techniques and deep learning. The main contributions include (1) a large dataset of manually labelled images about various types of Korea masonry walls; (2) a careful performance evaluation of various deep learning-based crack segmentation models, including U-Net, DeepLabV3+, and FPN; and (3) a novel algorithm to extract real-life crack length measurement by detecting the brick units. The experimental results showed that deep learning-based masonry crack segmentation performed significantly better than previous approaches and could provide a real-life crack measurement. Therefore, it has a huge potential for motivating masonry-based structure investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.