Abstract
The segmentation of cardiac medical images is a crucial step for calculating clinical indices such as wall thickness, ventricular volume, and ejection fraction. In this study, we introduce a method named LsUnet that combines multi-channel, fully convolutional neural network, and annular shape level-set methods for efficiently segmenting cardiac cine magnetic resonance (MR) images. In this method, the multi-channel deep learning algorithm is applied to train the segmentation task to extract the left ventricle (LV) endocardial and epicardial contours. Next, the segmentation contours from the multi-channel deep learning method are incorporated into a level-set formulation, which is dedicated explicitly to detecting annular shapes to assure the segmentation's accuracy and robustness. The proposed automatic approach was evaluated on 95 volumes (total 1,076 slices, ~80% as for training datasets, ~20% 2D as for testing datasets). This combined multi-channel deep learning and annular shape level-set segmentation method achieved high accuracy with average Dice values reaching 92.15% and 95.42% for LV endocardium and epicardium delineation, respectively, in comparison to the reference standard (the manual segmentation). A novel method for fully automatic segmentation of the LV endocardium and epicardium from different MRI datasets is presented. The proposed workflow is accurate and robust compared to the reference and other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.