Abstract
In computer vision applications, pattern recognition is one of the important fields in artificial intelligence. With the advancement in deep learning technology, many machine learning algorithms were developed to tackle the problem of pattern recognition. The purpose of conducting the research is to create the first-ever Dzongkha handwritten digit dataset and develop a model to classify the digit. In the study, the 3 layer set of CONV → ReLU → POOL, followed by a fully connected layer, dropout layer, and softmax function were used to train the digit. In the dataset, each class (0-9) contains 1500 images which are split into train, validation, and test sets: 70:20:10. The model was trained on three different image dimensions: 28 by 28, 32 by 32, and 64 by 64. Compared to image dimensions 28 by 28 and 32 by 32, 64 by 64 gave the highest train, validation, and test accuracy of 98.66%, 98.9%, and 99.13% respectively. In the future, the sample of digits needs to be increased and use the transfer learning concept to train the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JITCE (Journal of Information Technology and Computer Engineering)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.