Abstract
This study aims at developing a dataset for determining the presence of carotid artery plaques in ultrasound images, composed of 1761 ultrasound images from 1165 participants. A deep learning architecture that combines bilinear convolutional neural networks with residual neural networks, known as the single-input BCNN-ResNet model, was utilized to aid clinical doctors in diagnosing plaques using carotid ultrasound images. Following training, internal validation, and external validation, the model yielded an ROC AUC of 0.99 (95% confidence interval: 0.91 to 0.84) in internal validation and 0.95 (95% confidence interval: 0.96 to 0.94) in external validation, surpassing the ResNet-34 network model, which achieved an AUC of 0.98 (95% confidence interval: 0.99 to 0.95) in internal validation and 0.94 (95% confidence interval: 0.95 to 0.92) in external validation. Consequently, the single-input BCNN-ResNet network model has shown remarkable diagnostic capabilities and offers an innovative solution for the automatic detection of carotid artery plaques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.