Abstract

With the fast increase of multimedia traffic in Internet of Things (IoT) applications, IoT traffic now requires very different Quality of Service (QoS). By extensive statistical analysis of traffic flow data from a real world network, the authors find that there are some latent features hidden in the multimedia data, which can be useful for accurately differentiating multimedia traffic flows from the QoS perspective. Under limited training data conditions, existing shallow classification methods are limited in performance, and are thus not effective in classifying emerging multimedia traffic types, which have truly entered the era of big data and become very completed in QoS features. This situation inspires us to revisit the multimedia traffic classification problem with a deep learning (DL) approach. In this study, an improved DL-based multimedia traffic classification method is proposed, which considers the inherent structure of QoS features in multimedia data. An improved stacked autoencoder model is employed to learn the relevant QoS features of multimedia traffic. Extensive experimental studies with multimedia datasets captured from a campus network demonstrate the effectiveness of the proposed method over six benchmark schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.