Abstract

This paper presents a discrepancy minimizing model to address the discrete optimization problem in hashing learning. The discrete optimization introduced by binary constraint is an NP-hard mixed integer programming problem. It is usually addressed by relaxing the binary variables into continuous variables to adapt to the gradient based learning of hashing functions, especially the training of deep neural networks. To deal with the objective discrepancy caused by relaxation, we transform the original binary optimization into differentiable optimization problem over hash functions through series expansion. This transformation decouples the binary constraint and the similarity preserving hashing function optimization. The transformed objective is optimized in a tractable alternating optimization framework with gradual discrepancy minimization. Extensive experimental results on three benchmark datasets validate the efficacy of the proposed discrepancy minimizing hashing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.