Abstract
A thin-film solid-phase microextraction method with a sorbent composed of a deep eutectic solvent was developed for the preconcentration of formaldehyde from river and lake water samples. Four new deep eutectic solvents (DESs) were synthesized, each in molar ratios 1:1, 1:2, and 1:3. Among prepared compounds, the greatest efficiency in the proposed method of preconcentration of formaldehyde derivatized with Nash reagent was demonstrated by DES-3 consisting of benzyldimethylhexadecylammonium chloride and lauric acid, in a molar ratio of 1:3. For the proposed method, the parameters affecting the extraction efficiency of formaldehyde were optimized (including the choice of DES-based sorbent and desorption solvent as well as the sample volume and pH, the salting-out effect, the extraction time, and the desorption time). Under optimal conditions, the proposed method achieved good precision between 3.3% (for single sorbent) and 4.8% (for sorbent-to-sorbent) as well as good recovery ranging from 78.0 to 99.1%. The limits of detection and quantitation were 0.15 ng mL−1 and 0.50 ng mL−1, respectively. The enrichment factor was equal to 178. The developed method was successfully applied to determine formaldehyde in environmental water samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.