Abstract
We present deep convolutional neural network (DCNN)-based estimators of the tissue scatterer density (SD), lateral and axial resolutions, signal-to-noise ratio (SNR), and effective number of scatterers (ENS, the number of scatterers within a resolution volume). The estimators analyze the speckle pattern of an optical coherence tomography (OCT) image in estimating these parameters. The DCNN is trained by a large number (1,280,000) of image patches that are fully numerically generated in OCT imaging simulation. Numerical and experimental validations were performed. The numerical validation shows good estimation accuracy as the root mean square errors were 0.23%, 3.65%, 3.58%, 3.79%, and 6.15% for SD, lateral and axial resolutions, SNR, and ENS, respectively. The experimental validation using scattering phantoms (Intralipid emulsion) shows reasonable estimations. Namely, the estimated SDs were proportional to the Intralipid concentrations, and the average estimation errors of lateral and axial resolutions were 1.36% and 0.68%, respectively. The scatterer density estimator was also applied to an in vitro tumor cell spheroid, and a reduction in the scatterer density during cell necrosis was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.