Abstract

Conservative Policy Iteration (CPI) is a founding algorithm of Approximate Dynamic Programming (ADP). Its core principle is to stabilize greediness through stochastic mixtures of consecutive policies. It comes with strong theoretical guarantees, and inspired approaches in deep Reinforcement Learning (RL). However, CPI itself has rarely been implemented, never with neural networks, and only experimented on toy problems. In this paper, we show how CPI can be practically combined with deep RL with discrete actions, in an off-policy manner. We also introduce adaptive mixture rates inspired by the theory. We experiment thoroughly the resulting algorithm on the simple Cartpole problem, and validate the proposed method on a representative subset of Atari games. Overall, this work suggests that revisiting classic ADP may lead to improved and more stable deep RL algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.