Abstract
The photoluminescence (PL) from carbon dots can be dramatically modified through the engineering of surface oxygen-containing functional groups. Despite the recent surge of interest in the non-metal doping of carbon dots, the photo-physical properties of metal-doped carbon dots remain unexplored. Here, we report the highly efficient deep blue PL and amplified spontaneous emission from sodium (Na)-ion-doped carbon dots. Based on the structure- and temperature-dependent PL and the temporal evolution of PL, we reveal that the introduction of Na ions into carbon dots not only passivate the electronegative oxygen related defects but also create new Na–O related defect centers in the band gap, leading to deep blue PL with dramatically reduced bandwidth and significantly enhanced quantum yield. We establish a luminescence model with four energy levels to interpret the PL dynamics of Na+-doped carbon dots. We demonstrate for the first time the ASE from such carbon dots, which exhibit a net optical gain coefficient of 47.8 cm−1 at 440 nm. Our results open new horizons for improving the PL of carbon dots and pave the way for realizing optoelectronic devices based on carbon dots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.