Abstract

The objective of this study was to demonstrate the feasibility and the relevance of combining biochar with the Fenton process for the simultaneous improvement of polycyclic aromatic hydrocarbons (PAHs) degradation and immobilization of heavy metals (HMs) in real soil remediation processes at circumneutral pH. The evaluation of PAHs degradation results was performed through multivariate statistical tools, including principal component analysis (PCA) and partial least squares (PLS). PCA showed that the level of biochar amendment decisively affected the degree of degradation of total PAHs, highlighting the role of biochar in catalyzing the Fenton reaction. Moreover, the PLS model was used to interpret the important features of each PAH's physico-chemical properties and its correlation to degradation efficiency. The electron affinity of PAHs correlated positively with the degradation efficiency only if the level of biochar amendment sat at 5%, explained by the ability of biochar to transfer the electrons to PAHs, improving the Fenton-like degradation. Moreover, the addition of biochar reduced the mobilization of HMs by their fixation on their surface, reducing the Fenton-induced metal leaching from the destruction of metal-organic complexes. In overall, these results on the high immobilization rate of HMs accompanied with additional moderate PAHs degradation highlighted the advantages of using a biochar-assisted Fenton-like reaction for sustainable remediation of technogenic soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.