Abstract

BackgroundOlmsted syndrome (OS) is a congenital dermatosis characterized by palmoplantar keratoderma and periorificial keratotic plaque. TRPV3 (transient receptor potential vanilloid subtype 3) encodes a thermosensitive Ca2+ channel and is the causative gene of OS. However, the molecular mechanism that causes the pathological development of OS is unclear. ObjectiveWe aimed to investigate the molecular mechanisms underlying OS pathology from the perspective of lipid metabolism. MethodsComprehensive lipidomics and microarray analyses were conducted on tissue samples from a non-lesional skin area of OS model rats (Ht rats) and from wild type (WT) rats as the control. ResultsInfiltration of leukocytes such as eosinophils and neutrophils and an increase in the fibrotic region were detected in the unaffected skin area of Ht rats compared with the WT rats. Among about 600 lipid species examined, the levels of 15-lipoxygenase (LOX) metabolites, the precursors of anti-inflammatory and pro-resolving lipid mediators, and dihydroceramides decreased by ≥16-fold in Ht rats compared with WT rats. Consistent with the decreases in the 15-LOX metabolites, expression levels of the genes that encode the 15-LOXs, Alox15 and Alox15b, were largely reduced. Conversely, increased expression levels were detected of Il36b, Ccl20, Cxcl1, and Cxcl2, which encode cytokines/chemokines, and S100a8 and S100a9, which encode the Ca2+ binding proteins that are implicated in epidermal proliferation. ConclusionThe pro-inflammatory state in the unaffected skin of Ht rats caused by decreases in 15-LOX metabolites and increases in cytokines/chemokines may contribute to the pathogenesis of OS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.