Abstract
Helicobacter pylori (H. pylori) is a known gastro-intestinal pathogen but implicated in extra-gastric diseases. The relationship between H. pylori infection and type 2 diabetes (T2DM) remains insufficiently elucidated, particularly in terms of molecular mediators such as microRNAs (miRNAs) and messenger RNAs (mRNAs). We aimed to characterize expression pattern of insulin signalling mRNAs and targeted miRNAs in T2DM patients exposed to H. pylori infection. We conducted a cross-sectional study among patients diagnosed with type 2 diabetes mellitus and were aged 18 to 60 years. Overnight fasting blood samples were collected and processed for plasma and serum. The plasma samples were used for glucose estimation and the serum used for H. pylori IgG screening. Total RNA was extracted from the serum with commercial kit, and mRNAs and miRNAs quantified by RT-qPCR with specific primers and under predetermined amplification conditions. Clinical data were obtained from medical records of patients. Among 351 patients enrolled, 267 (76.1%) were females, 224 (63.8%) were married, and 79 (22.5%) had tertiary education. Expression level of insulin receptor mRNA was significantly lower in H. pylori positive T2DM patients compared to H. pylori negative (P < .05). There was no evidence of a difference in insulin receptor substrate 1 mRNA level (P > .05). Although not statistically significant, the expression levels of miRNA-222 and miRNA-155 in the patients exposed to H. pylori were higher than that of the unexposed group (P > .05). We found a significantly reduced serum insulin receptor messenger RNA level and higher levels of miRNA-222 and miRNA-155 in H. pylori exposed T2DM patients. The findings suggest a possible role of the infection in insulin signalling alteration in the patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.