Abstract

AimsTo overcome radioresistant cancer cells, clinically relevant radioresistant (CRR) cells were established. To maintain their radioresistance, CRR cells were exposed 2 Gy/day of X-rays daily (maintenance irradiation: MI). To understand whether the radioresistance induced by X-rays was reversible or irreversible, the difference between CRR cells and those without MI for a year (CRR-NoIR cells) was investigated by the mitochondrial function as an index. Main methodsRadiation sensitivity was determined by modified high density survival assay. Mitochondrial membrane potential (Δψm) was determined by 5,5′,6,6′-tetrachloro-1,1′, tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) staining. Rapid Glucose-Galactose assay was performed to determine the shift in their energy metabolism from aerobic glycolysis to oxidative phosphorylation in CRR cells. Involvement of prohibitin-1 (PHB1) in Δψm was evaluated by knockdown of PHB1 gene followed by real-time PCR. Key findingsCRR cells that exhibited resistant to 2 Gy/day X-ray lost their radioresistance after more than one year of culture without MI for a year. In addition, CRR cells lost their radioresistance when the mitochondria were activated by galactose. Furthermore, Δψm were increased and PHB1 expression was down-regulated, in the process of losing their radioresistance. SignificanceOur finding reveled that tune regulation of mitochondrial function is implicated in radioresistance phenotype of cancer cells. Moreover, as our findings indicate, though further studies are required to clarify the precise mechanisms underlying cancer cell radioresistance, radioresistant cells induced by irradiation and cancer stem cells that are originally radioresistant should be considered separately, the radioresistance of CRR cells is reversible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.