Abstract

We studied the binding and degradation of stable, soluble heat aggregates of 125I-IgG (A-IgG) by monocytes from 30 patients with systemic lupus erythematosus (SLE) and 30 normals. Relative avidities (KE) for Fc receptor (FcR) binding of A-IgG and maximal binding of A-IgG by monocytes were determined from Scatchard plots of binding data obtained at 4 degrees C. Rates of degradation (Vmax) of A-IgG at 37 degrees C were calculated from Lineweaver-Burke plots of the Michaelis-Menton equation. KE were decreased in SLE monocytes (15.5 X 10(-9) L/M) as compared with normals (20.1 X 10(-9) L/M, p less than 0.005) and Vmax were decreased for SLE (0.89 ng/hr) as compared with normals (1.11 ng/hr, p less than 0.005). The maximal FcR binding by SLE monocytes was not statistically different in SLE patients and normals, but monocytes from SLE patients with active disease showed a lower maximal binding capacity for A-IgG (4.9 ng/10(5) cells) than normals (5.4 ng/10(5) cells, p less than 0.05). KE and Vmax in SLE were also lower for patients with active disease than for normal subjects. KE in patients whose anti-ssDNA binding was greater than 20% were lower than for those with DNA binding of less than 20% (p less than 0.005). These data suggest that patients with active SLE have diminished numbers of available FcR on their circulating monocytes, possibly due to interiorization of FcR during endocytosis of endogenous circulating immune complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.