Abstract

Caveolins are key components of caveolae membranes. The calcium-sensing receptor (CaR) resides within caveolin-rich membrane domains in bovine parathyroid (PT) cells. Recent studies reported reduced CaR expression, and abnormal calcium-sensing in PT tumors. To examine this altered CaR signaling, we investigated ERK activation after CaR stimulation in human and bovine PT cells. In freshly prepared bovine PT cells, high extracellular calcium (Ca(2+)(0)) stimulates ERK1/2 phosphorylation, and activated ERK1/2 colocalizes with caveolin-1 at the plasma membrane but fails to translocate to the nucleus, and cell proliferation is low. In cultured bovine PT cells, CaR and caveolin-1 levels are reduced; activated ERK1/2 localizes in the cell periphery at 10 min and in the perinuclear and nuclear regions at 60 min after exposure to high Ca(2+)(0), and cell proliferation is increased. In PT cells from adenomas, there are high levels of caveolin-2, variably reduced caveolin-1, and hyperactivation of ERK1/2, which colocalizes with caveolin-1 in some cells, but localizes in the cytosol and nucleus in others. Finally, caveolin-1 negative human PT cells exhibit reduced suppressibility of PTH secretion by high Ca(2+)(0). Thus, CaR and caveolin-1 colocalize in PT cells, and reduced levels of caveolin-1 could participate in the abnormal cellular function and proliferation of cultured bovine PT cells and PT adenomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.