Abstract

The application of two or more different time-dependent coherent perturbations with, in general, incommensurable frequencies occurs quite commonly in NMR experiments. Here we develop a unified description of the entire class of experiments using bimodal Floquet theory and van Vleck-Primas perturbation theory. This treatment leads to a time-independent effective Hamiltonian in Hilbert space and can be looked at as a generalization of average Hamiltonian theory to several incommensurate time dependencies. As a prototype experiment we treat the application of continuous-wave (cw) radio-frequency irradiation in combination with magic-angle sample spinning. Practically relevant examples of this type of experiments are heteronuclear spin decoupling and recoupling experiments using cw irradiation, e.g., rotary-resonance recoupling. Perturbations up to the third order must be taken into account to explain all experimentally observed resonance conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.