Abstract
Photoelectrochemical (PEC) water splitting offers an elegant approach for solar energy conversion into hydrogen fuel. Large-scale hydrogen production requires stable and efficient photoelectrodes and scalable PEC cells that are fitted for safe and cost-effective operation. One of the greatest challenges is the collection of hydrogen gas from millions of PEC cells distributed in the solar field. In this work, a separate-cell PEC system with decoupled hydrogen and oxygen cells was designed for centralized hydrogen production, using 100 cm2 hematite (a-Fe2O3) photoanodes and nickel hydroxide (Ni(OH)2) / oxyhydroxide (NiOOH) electrodes as redox mediators. The operating conditions of the system components and their configuration were optimized for daily cycles, and ten 8.3 h cycles were carried out under solar simulated illumination without additional bias at an average short-circuit current of 55.2 mA. These results demonstrate successful operation of a decoupled PEC water splitting system with separate hydrogen and oxygen cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.