Abstract

We present herein a decoupled multiuser acquisition (DEMA) algorithm for code-timing estimation in asynchronous code-division multiple-access (CDMA) communication systems. The DEMA estimator is an asymptotic (for large data samples) maximum-likelihood method that models the channel parameters as deterministic unknowns. By evoking the mild assumption that the transmitted data bits for all users are independently and identically distributed, we show that the multiuser timing estimation problem that usually requires a search over a multidimensional parameter space decouples into a set of noniterative one-dimensional problems. Hence, the proposed algorithm is computationally efficient. DEMA has the desired property that, in the absence of noise, it obtains the exact parameter estimates even with a finite number of data samples which can be heavily correlated. Another important feature of DEMA is that it exploits the structure of the receiver vectors and, therefore, is near-far resistant. Numerical examples are included to demonstrate and compare the performances of DEMA and a few other standard code-timing estimators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.