Abstract
Abstract Covariance matrix estimation is a persistent challenge for cosmology, often requiring a large number of synthetic mock catalogues. The off-diagonal components of the covariance matrix also make it difficult to show representative error bars on the 2-point correlation function (2PCF) since errors computed from the diagonal values of the covariance matrix greatly underestimate the uncertainties. We develop a routine for decorrelating the projected and anisotropic 2PCF with simple and scale-compact transformations on the 2PCF. These transformation matrices are modelled after the Cholesky decomposition and the symmetric square root of the Fisher matrix. Using mock catalogues, we show that the transformed projected and anisotropic 2PCF recover the same structure as the original 2PCF while producing largely decorrelated error bars. Specifically, we propose simple Cholesky-based transformation matrices that suppress the off-diagonal covariances on the projected 2PCF by ${\sim } 95{{\ \rm per\ cent}}$ and that on the anisotropic 2PCF by ${\sim } 87{{\ \rm per\ cent}}$. These transformations also serve as highly regularized models of the Fisher matrix, compressing the degrees of freedom so that one can fit for the Fisher matrix with a much smaller number of mocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.