Abstract

A nonparametric deconvolution algorithm for recovering the photon time-of-flight distribution (TOFD) from time-resolved (TR) measurements is described. The algorithm combines wavelet denoising and a two-stage deconvolution method based on generalized singular value decomposition and Tikhonov regularization. The efficacy of the algorithm was tested on simulated and experimental TR data and the results show that it can recover the photon TOFD with high fidelity. Combined with the microscopic Beer-Lambert law, the algorithm enables accurate quantification of absorption changes from arbitrary time-of-flight windows, thereby optimizing the depth sensitivity provided by TR measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.