Abstract

We report a quantitative study of the effect of nonaxial recoil during Coulomb explosion of laser-aligned molecules and introduce a method to remove the blurring caused by nonaxial recoil in the fragment-ion angular distributions. Simulations show that nonaxial recoil affects correlations between the emission directions of fragment ions differently from the effect caused by imperfect molecular alignment. The method, based on analysis of the correlation between the emission directions of the fragment ions from Coulomb explosion, is used to deconvolute the effect of nonaxial recoil from experimental fragment angular distributions. The deconvolution method is then applied to a number of experimental data sets to correct the degree of alignment for nonaxial recoil, to select optimal Coulomb explosion channels for probing molecular alignment, and to estimate the highest degree of alignment that can be observed from selected Coulomb explosion channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.