Abstract

It is well known that the Pearson statistic $$\chi ^{2}$$ can perform poorly in studying the association between ordinal categorical variables. Taguchi’s and Hirotsu’s statistics have been introduced in the literature as simple alternatives to Pearson’s chi-squared test for contingency tables with ordered categorical variables. The aim of this paper is to shed new light on these statistics, stressing their interpretations and characteristics, providing in this way new and different interpretations of these statistics. Moreover, a theoretical scheme is developed showing the links between the different proposals and classes of cumulative chi-squared statistical tests, starting from a unifying index of heterogeneity, unalikeability and variability measures. Users of statistics may find it attractive to understand well the different proposals. Some decompositions of both statistics are also highlighted. This paper presents a case study of optimizing the polysilicon deposition process in a very large-scale integrated circuit, to identify the optimal combination of factor levels. It is obtained by means of the information coming from a correspondence analysis based on Taguchi’s statistic and regression models for binary dependent variables. A new optimal combination of factor levels is obtained, different from many others proposed in the literature for this data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.