Abstract

Although the method of multipliers can resolve the dual gaps which will often appear between the true optimum point and the saddle point of the Lagrangian in large system optimization using the Lagrangian approach, it is impossible to decompose the generalized Lagrangian in a straightforward manner because of its quadratic character. A technique using the linear approximation of the perturbed generalized Lagrangian has recently been proposed by Stephanopoulos and Westerberg for the decomposition. In this paper, another attractive decomposition technique which transforms the nonseparable crossproduct terms into the minimum of sum of separable terms is proposed. The computational efforts required for large system optimization can be much reduced by adopting the latter technique in place of the former, as illustrated by application of these two techniques to an optimization problem of a chemical reactor system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.